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Abstract The patent laws of many countries have “research exemption” provisions that
exempt certain research-related uses of proprietary materials from patent infringement. By
limiting the rights of existing patent holders, such rules are meant to facilitate follow-on
innovation and benefit latecomer firms, especially in the pharmaceutical industry. In this
paper, we provide the first study of the impact of the research exemption, exploiting unique
features of the institutional setting in China. Using firm-level data from 2007 to 2018 and a
difference-in-differences (DID) strategy, we find that the research exemption in China leads
to a large increase in firms’ R&D inputs. However, there is no evidence that the research
exemption leads to more patents or improved productivity on average. Further analysis
reveals that it only causes an increase in patents for few firms with large market power.
Overall, our findings highlight the importance of understanding the relationship between
firms’ innovation and imitation strategies for the design of innovation policies.
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1 Introduction

A central issue in the design of innovation policies is to provide firms with the proper

incentives to innovate. For follower firms, limiting the monopoly rights of incumbent patent

holders makes it easier to catch up in the technology race. This paper studies the so-called

“research exemption” (or “experimental-use exemption”) rules that exist in the patent laws

of many countries. Such rules exempt certain research-related uses of proprietary information

and technology from patent infringement, and in general, they are intended to encourage

follow-on innovation and benefit latecomers. Also known as the Bolar exemption in the

pharmaceutical context (after the court case Roche v. Bolar in the U.S.), they are often

specifically intended to facilitate generic drug production.1 Under a research exemption,

pharmaceutical firms can use patent-protected materials and methods for their own product

R&D, and by doing so, they can shorten the development cycle of generic drugs and follow-

on medicines. As generic drugs are often economical substitutes for brand-name medicines

and crucial to public health (Haas et al., 2005; Gothe et al., 2015), understanding the impact

of the research exemptions on pharmaceutical manufacturing is vitally important, especially

in times of global health crisis (Service, 2020; Rogosnitzky et al., 2020). In the U.S., the

issue of whether to codify a broadly applied research exemption has also been the subject

of heated debate (see, e.g., Mueller, 2004; Short, 2016b). Despite the importance of the

research exemption, empirical evidence of its impact remains scant. In fact, as noted by

Short (2016b), “[t]o date, [...] no studies have attempted to measure how the implementation

or codification of a research exemption—whether general or subject matter-specific, whether

in the United States or elsewhere—influences research expenditures or proxies for innovation

outcomes (like new drug applications) [...]” In this paper, we aim to partially fill this gap by

providing the first evidence of the causal impact of the research exemption law. In particular,

we examine how the introduction of the research exemption affects both R&D inputs and

1For accounts of the Bolar exemption and the related 1984 Hatch-Waxman Act in the U.S., see, e.g.,
Kelly (2011) and Short (2016a).
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innovation outputs in China’s emerging pharmaceutical sector.

While it is generally expected that the research exemption would provide incentives for

follow-on firms to invest in R&D, the nature and results of such R&D activities are often not

well understood. In pharmaceuticals, generic R&D is a form of imitation—that is, develop-

ing a product similar or functionally identical to an existing one—rather than innovation,

which involves developing something entirely novel. Therefore, depending on the strategic

relationship between imitation and innovation, providing R&D incentives to firms may have

different effects on innovation outcomes. On the one hand, the “knowledge spillover” view

emphasizes the learning aspect of R&D (Cohen and Levinthal, 1989): imitation can allow

firms to acquire the knowledge necessary for cumulative innovation and thus serves a com-

plementary role. For instance, the process of generic research and manufacturing can lead

to technology upgrading and innovation in peripheral areas, such as basic chemical sub-

stances and manufacturing techniques; in Section 2, we include an account of Lopinavir—an

HIV-treating drug recently considered for treating COVID-19 (Cao et al., 2020)—that has

had many related patent applications in China made before the expiry of the patents on its

core substances. On the other hand, if imitation and innovation are independent or substi-

tutable strategies for latecomer firms, generic R&D may not lead to—and may even crowd

out—genuine innovation. These considerations can be crucial for the design of innovation

policies, especially in less developed economies whose industries predominantly comprise fol-

lower firms, because policies may “make it more likely that a society will be trapped [...] and

fail to converge to the world technology frontier” (Acemoglu et al., 2006).

China’s pharmaceutical industry provides an ideal setting for us to investigate these

different possibilities. First, along with India, China’s pharmaceutical sector has become

increasingly important in the global supply chain. Traditionally, China has been a major

supplier of low-cost medicines to low-income and developing countries (Hafner and Popp,

2011). In recent years, China and India are responsible for 80% of the supply of active

pharmaceutical ingredients (APIs)—the basic chemical compounds for drug manufacturing—
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in the U.S. (Huang, 2020), and China’s supply alone accounts for 40% of all APIs used around

the world (Horner, 2020). At the same time, 90% of China’s pharmaceutical firms are generic

drug producers.

Second, the unique institutional setting in China gives us a rare opportunity to tackle the

common empirical challenge of finding causal relationships. In October 2009, China intro-

duced a pharmaceutical-specific research exemption as part of its third patent law amend-

ment, and a series of acts that were previously considered illegal and frequently challenged

in court in China became exempt from patent infringement (Zhuang, 2014). Along with the

research exemption, there have been several other reforms, such as higher patentability stan-

dards and increased infringement penalties. To isolate the impact of the research exemption

from other contemporaneous effects, we take advantage of the presence of traditional Chi-

nese medicine (TCM) firms in China. TCM firms are pharmaceutical manufacturers that use

modern technology to produce medical products based on alternative theories of medicine.

In our sample of publicly listed firms, they are large enterprises that serve sizable domestic

markets and have average characteristics similar to those of mainstream drug producers.

Figure 1 shows that TCM firms and other drug producers have similar average R&D levels

before 2010. However, TCM firms typically do not engage in R&D and production related

to generic drugs or follow-on products based on modern pharmacology, and the sector in

general lacks cumulative innovation (Pan et al., 2011; Qin and Dong, 2016); therefore, these

firms should not be susceptible to the new research exemption law. This distinct feature

is in sharp contrast to the practice of mainstream drug producers—which we refer to as

biochemical firms in this paper—that are predominantly manufacturers of chemical ingredi-

ents and generic drugs. To establish causal evidence, our empirical difference-in-differences

(DID) strategy thus relies on the comparison of the outcome variables of biochemical firms

to those of TCM firms before and after the introduction of the research exemption law in

China. Using our dataset of publicly listed firms from 2007 to 2018, we show that biochemi-

cal and TCM firms are largely comparable in terms of average pre-reform R&D growth and
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other firm-level characteristics (see Table 2). To further assess the appropriateness of our

comparison, we use the synthetic control method (Abadie et al., 2010) to generate an artifi-

cial comparison group from a pool of TCM firms and out-of-sample chemical manufacturing

firms, targeting the pre-reform characteristics of the treatment firms. We show that the

automated procedure assigns disproportionately high weights to TCM firms in forming the

synthetic controls, thus lending additional support to our research design. In Section 4, we

describe our DID strategy in detail and present further evidence to support our identification

assumptions.

Our estimation results based on firm-year observations show that after the introduction

of the research exemption, on average, China’s biochemical firms spend CNY53.9 million

(US$8 million) more on R&D, and their R&D intensity increases by approximately 30%,

compared with TCM firms. As our results pass a series of tests for parallel trends, placebo

effects, and robustness, we consider the estimates to have a causal interpretation. In addition,

the research exemption leads to a large increase in firms’ in-house R&D employment. Our

findings provide the first piece of evidence for the strong positive effects of the research

exemption in inducing pharmaceutical R&D.

At the same time, using various measures related to firms’ patent status and total factor

productivity (TFP), we find that the research exemption has no significant impact on future

innovative outputs in China’s pharmaceutical sector. Our results are robust to additional

checks, in which we consider alternative variables, use more restrictive sample construction

rules, and control for international trade factors. Overall, our findings suggest that in the

Chinese context, the increased R&D investments brought by the research exemption law did

not lead to innovation or productivity improvement on average. They are consistent with

the theoretical argument that stresses the substitutability between imitation and innovation.

To further explore firm heterogeneity in treatment effects, we show that firms with large

market power—measured by firms’ market share in their home provinces—have larger in-

creases in their R&D spending and future patents after the research exemption law; however,
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such differential effects do not exist with regard to measures of firm size. This finding high-

lights the important role of market concentration in shaping policy effects on the innovation

incentives of firms.

This paper contributes to our understanding of the effects of intellectual property (IP)

protection and innovation policies. While there is no existing evidence to our knowledge

of the impact of the research exemption,2 Moschini and Yerokhin (2008) present the only

theoretical analysis of this subject. They compare private incentive and social welfare under

the research exemption vis-à-vis full patent protection in a model of sequential innovation.

Relatedly, there is an important empirical literature on the effects of IP protection and

patents (see Williams (2017) for a recent review). For instance, Williams (2013) finds that

the IP protection of human genome sequences significantly reduces subsequent research by

20–30%; however, in a subsequent study, Sampat and Williams (2019) find that patents

on human genes have no effect on follow-on innovation. Galasso and Schankerman (2015)

show that the removal of patent rights through court invalidation has a positive impact on

follow-on innovation in information technology (IT) industries but not in pharmaceutical

and chemical industries. In this paper, we examine how the relaxation of pre-existing patent

rights affects both the R&D inputs and innovative outputs of follower firms. Using a novel

design for identification, our study confirms the positive effect of the research exemption

on pharmaceutical R&D. We also point out that increases in R&D may not lead to truly

innovative outputs or enhanced productivity.

This paper is closely related to several strands of the large literature on innovation.

The knowledge spillover effect of R&D is stressed by Cohen and Levinthal (1989) and has

been considered an important source for economic growth since Grossman and Helpman

(1991) and Aghion and Howitt (1992). In addition, the dichotomy between innovation

and imitation has been emphasized by, for instance, Benoit (1985) and Katz and Shapiro

(1987) in industrial organization and Acemoglu et al. (2006) in macro development. Our

2Iles (2005) presents country-level descriptive statistics in a discussion of the possible effects of research
exemptions.
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empirical investigation builds on their important insights to understand the effects of the

research exemption law in a specific industry setting. Our market power-based explanation

of firm heterogeneity in treatment effects is related to a long-standing debate about the

relationship between market concentration and innovation incentives, following the classic

works of Schumpeter (1942) and Arrow (1962), as surveyed by Cohen (2010). Our findings

support Schumpeters argument by showing that only very firms with large market power

generate more innovation outputs following the implementation of the research exemption

in China.

By focusing on China’s pharmaceutical sector, our study also adds to the economics lit-

erature on pharmaceutical markets (see Morton and Kyle (2011) for a review). Using data

from 76 countries, Cockburn et al. (2016) show that patent protection helps new drugs to

become commercially available in a country. In recent years, the importance of big emerging

countries like China and India in the global pharmaceutical supply chain has been especially

recognized. This study joins previous works that examine the policy factors affecting the

pharmaceutical sector in developing countries, especially India (e.g., Chaudhuri et al., 2006;

Kyle and McGahan, 2012; Duggan et al., 2016). In a recent study, Zhang and Nie (2021) use

patent data to examine market size—a demand-side factor—and pharmaceutical innovation

in China. Our study explores an important policy that affects supply-side incentives for

pharmaceutical R&D. Our results suggest that, in the context of a large developing econ-

omy with follower firms, the research exemption law alone has limited effects in spurring

innovation. An important factor to consider, especially for laggard countries, is the strategic

relationship in firms between imitation and innovation.

The rest of this paper is organized as follows. In Section 2, we describe China’s phar-

maceutical industry, especially TCM firms, and the 2009 patent law reform. In Section 3,

we describe our data and present the descriptive statistics. Section 4 describes our em-

pirical methodology. Section 5 presents our empirical results. The final section states our

conclusions.
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2 Institutional Background

2.1 Research exemptions around the world and in China

Under research exemption laws, firms are able to use patented materials and information

for their own product development before the expiration of the related patents. However, the

form and scope of the research exemptions vary across countries. The term “Bolar exemp-

tion,” often specific to the pharmaceutical industry, comes from the U.S. court case Roche

Products v. Bolar Pharmaceuticals in which Roche sued the generic drug manufacturer Bo-

lar for the infringing use of patented chemical substances. However, in the U.S., there is

no broad statutory research exemption law (Iles, 2005), and the Bolar exemption specific to

pharmaceuticals is included in the 1984 Hatch-Waxman Act, with the intention of benefiting

generic drug manufacturers after the Roche v. Bolar case (Kelly, 2011; Short, 2016a). In

contrast, Japan’s patent law has a statutory research exemption, which generally applies

to all patented products, not just medicines and medical products (Iles, 2005). European

countries also have very different research exemption rules regarding pharmaceuticals and

other industries (see Kupecz et al. (2015) for a review). The research exemption for phar-

maceuticals has been adopted by major developing countries, such as Argentina, India, and

Malaysia (Tridico et al., 2014).

A pharmaceutical-specific research exemption was introduced in China as part of the third

amendment to China’s patent law, which was passed by the National People’s Congress in

2008 and went into effect in October 2009.3 The newly added item (5) in Article 69 of

the patent law states that the acts of “producing, using or importing patented medicine or

patented medicinal equipment for the purpose of providing the information as required for

administrative examination and approval” are exempt from patent infringement. Previously,

such acts were deemed patent infringement in China,4 and there were numerous court cases

3See “Patent Law of the People’s Republic of China (2008 Amendment).” http://www.lawinfochina.

com/display.aspx?id=7289&lib=law (texts in English translation) and Zhuang (2014) for a review of
China’s patent system.

4See Article 13 of the second amendment of China’s patent law; i.e., “Patent Law of the People’s Republic

7

http://www.lawinfochina.com/display.aspx?id=7289&lib=law
http://www.lawinfochina.com/display.aspx?id=7289&lib=law


in which incumbent patent holders sued Chinese generic drug producers for the infringing

use of patents—the first of such cases was Glaxo Wellcome v. Southwest Pharmaceuticals,

in which the British multinational pharmaceutical company sued the Chinese producer for

using its patents in the clinical trial of a new drug and eventually won.

The 2008/2009 amendment of China’s patent law also brought several other significant

changes, such as higher patentability standards, increased infringement damages, and clar-

ified rules on patent joint ownership and double patenting (Zhuang, 2014). However, the

research exemption was the only new law specific to the pharmaceutical industry. This insti-

tutional feature of the 2008/2009 amendment is important for our research design, to isolate

the impact of the research exemption from the effects of other concurrent changes in the law.

2.2 Pharmaceutical innovation in China

Since the 1980s, the sales and production of pharmaceuticals in China have experienced

double-digit growth. From 2008 to 2018, the total industry revenue increased from approx-

imately CNY908 billion (US$130 billion) to CNY2,426 billion (US$350 billion), accounting

for 2.6% of China’s GDP.5 In China, domestic pharmaceutical manufacturers typically en-

gage in the production of generic drugs, chemical compounds, TCMs, and other medical

products (Jiang et al., 2001). In the early 2000s, there were approximately 5,000 firms in the

industry, of which 90% were generic drug producers. Over time, the industry has become

an important supplier of low-cost medicines and chemical ingredients to overseas markets,

including low-income and developing countries (Hafner and Popp, 2011). For instance, it is

reported that 90% of the U.S. supply of antibiotics, vitamin C, and a number of common

medicines are imported from China (Huang, 2020), and China’s supply alone accounts for

40% of all APIs used around the world (Horner, 2020).

of China (2000 Amendment).” http://www.lawinfochina.com/display.aspx?id=4983&lib=law (texts in
English translation). In fact, according to China’s National Intellectual Property Administration, prior
to 2008/2009, corporate R&D and experiments were in generally not considered as research for scientific
purposes (CNIPA, 2001).

5Source: China’s National Bureau of Statistics. Also see Jiang et al. (2001), Sun et al. (2008), and Yu
et al. (2010).
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Despite the growing importance of China’s pharmaceutical sector, until recently it was

weak in R&D and lacked innovative capacity. Many drug manufacturers relied on small-scale

production with outdated technology and management structure (Yu et al., 2010). R&D

intensity was also low. For instance, between 2005 and 2008, the ratio of R&D spending to

sales revenue among pharmaceutical firms was 1% to 2% on average, whereas this ratio was

around 15% to 18% for pharmaceutical companies in major developed countries (Sun et al.,

2008; DiMasi and Grabowski, 2012). Therefore, industrial policy and institutional reforms

aimed at promoting R&D and innovation, such as the research exemption, are crucial for

pharmaceutical innovation in China.

Over the past decade, the innovation level of China’s pharmaceutical companies has

increased. Figure 1 shows the average R&D spending of China’s listed pharmaceutical

companies from 2007 to 2018. Although in general China’s pharmaceutical sector lacks

groundbreaking innovations and proprietary products, through the process of imitation and

learning, drug producers can make technical progress and incremental innovation based on

their existing knowledge. For instance, research and manufacturing of a new generic drug

can lead to innovation in a number of basic areas, such as chemical compounds and mixture,

crystal structure, chemical intermediates, pharmaceutical preparations, and drug usage. An

important example is Lopinavir, a drug used to treat HIV and recently considered as a can-

didate drug for treating the COVID-19 (see, e.g., Cao et al., 2020), for which purpose it is

sold under the brand name Kaletra. The patents on Lopinavir’s basic substances were held

by Abbott Laboratories and expired in 2016. However, as of 2014, 149 patent applications

in China were related to Lopinavir from various applicants including big multinational firms

(e.g., Pfizer, DuPont, and Schering-Plough) and domestic research institutions (e.g., Nanjing

University and Shanghai Public Health Clinical Center) and firms; and these applications

covered chemical intermediates, drug preparations, and medical usage (Yang et al., 2015).

Another example is Atorvastatin, a drug used to treat dyslipidemia and sold under the brand

name Lipitor. Although the key patents on its basic substance are held by Pfizer, during
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the 1996-2000 period, there were 59 related patent applications in China—among which 44

were filed by domestic firms—covering Atorvastatin-based preparation methods, chemical

mixture, and compounds (Liu et al., 2011). It has been documented that in China, the

process from generic R&D to production typically takes around two to three years.6 Patent

applications can be made at different stages in the process. In fact, pharmaceutical inno-

vators conventionally disclose information and file patent applications early in the research

process, for both ethical and regulatory reasons (Lehman, 2003).

2.3 TCM in China

In comparison to mainstream biochemical firms, TCM firms in China have a very different

mode of product development. Due to their cultural acceptance and inexpensiveness, TCMs

are often popular alternatives for treating diseases and illnesses among Chinese people. In

2018, more than 52,000 hospitals and clinics specialized in TCMs, accounting for approxi-

mately 20% of all health facilities in China, and the total number of TCM outpatient visits

was around 1 billion per year, representing 12% of all outpatient visits in China (National

Administration of Traditional Chinese Medicine, 2019). Serving the strong domestic market

demand, listed TCM firms in China are large enterprises; in fact, based on our sample, TCM

and biochemical firms are on average comparable in terms of their size, total assets, and

financial status (see Table 2).

TCM firms—especially the large ones that we examine in this study—use modern tech-

nology for production; however, their products are based on a set of alternative theories

and principles, which include the use of Chinese herbal medicines (zhongcaiyao) and unique

systems of medicine preparation (paozhi) and formulas (fangji) (Xu and Yang, 2009). There-

fore, the mode and standards of TCM R&D and innovation differ significantly from those

based on modern medicines and pharmacology (Pan et al., 2011). According to the study

of China’s TCM patents by Qin and Dong (2016), during the 2003-2013 period, most in-

6See, e.g., China Bond Rating Coporation (2017)’s report on China’s pharmaceutical industry.
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ternational and domestic TCM patent applications from China were based on special TCM

compounds (zhongyao fufang), of which many are generation-old, family-held formulas. In

fact, 35% of the TCM-related patents in China in this period were held by individuals instead

of pharmaceutical companies and research institutions.

Overall, previous studies indicate a lack of cumulative innovation in the TCM sector,

partly because of TCM’s somewhat outdated and opaque mode of R&D that often does not

connect to modern pharmacology (Pan et al., 2011; Qin and Dong, 2016).7 Although on

average, TCM firms in China have low R&D levels (Cao et al., 2019), based on our sample

of listed firms in China, we find that the R&D intensity of TCM firms was not significantly

lower than that of other drug producers in 2009. As shown in Figure 2, the mean and median

values for R&D intensity among biochemical firms are 0.039 and 0.036, respectively, while for

TCM firms, the values are 0.030 and 0.025, respectively, which are only slightly smaller and

largely comparable. Figure 1 shows that the average R&D spending of both biomedical and

TCM firms has increased over time. However, the distribution of their R&D inputs shows

clear differences in 2018 (i.e., the last year of our sample period). As previously stated, our

study compares China’s TCM firms and mainstream biochemical firms to disentangle the

effects of the research exemption. Before explaining our estimation strategy, we describe our

dataset in the next section.

[Figure 1 about here]

7For instance, according to Pan et al. (2011), “[t]he practice of TCM is mainly based on an empirical
approach which has yet to be accepted in Western medicine. Despite the long history of use, the therapeutic
application of [Chinese herbal medicines (CHM)] or their formulae needs to be validated by experimental
and/or clinical evidence obtained from contemporary studies using appropriate methodologies. After all, the
efficacy and toxicity of CHM need to be addressed by scientifically acceptable language in the 21st century.”
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3 Data and Summary Statistics

3.1 Data Sources and Variable Construction

We use data on publicly listed pharmaceutical manufacturing firms (CSRC industry

code C27) in China’s A-share markets from 2007 to 2018. The primary data source is the

China Stock Market and Accounting Research (CSMAR) database, a standard database for

Chinese business research similar to Compustat in the U.S. The CSMAR data include firm-

level information on R&D, patent applications and grants, and other financial variables. To

avoid sample selection problems, we drop all firms that first appear in the database after

2009—our policy event year.

The main data are further augmented in two ways. First, we use additional information

from another financial database, Choice Data, for selected variables (e.g., the number of em-

ployees). Second, we manually check firms’ annual financial reports to add any information

missing from the original database. The resulting dataset is an unbalanced panel of 141

Chinese pharmaceutical firms over 12 years.

In this research, we study the impacts of the research exemption at various stages of the

pharmaceutical production and innovation process. First, to measure R&D inputs, we use

both R&D spending and R&D intensity, which is the ratio of R&D spending to total sales. To

construct the total R&D spending variable, we follow the finance literature (e.g., Acharya and

Subramanian, 2009) and China’s accounting standards to include both firms’ R&D expenses

(under the category “Administrative Expenses”) and capitalized R&D expenditure (under

“Intangible Assets”). To gauge firms’ in-house R&D level, we also examine the number of

R&D-related personnel in a firm.

For firms’ long-term innovation, we use two measures. The first measure is the number of

patents filed by a firm in a given year that are eventually granted. We use the patent appli-

cation year as it better captures the actual time of innovation than the grant year (Griliches

et al., 1987). In China’s patent system, any patent is one of three types: “invention,” “utility
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model,” or “design.” For our main empirical analysis, we only consider the first two types

of patents as innovation outcomes. In Table A.3, we show that our main results are robust

when we consider alternative patent measures. Our patent data are available from 2007 to

2017. Upon checking the patent statistics of listed pharmaceutical firms, we find that it takes

2.2 years on average for a successful patent application to be approved in China. Therefore,

we only use the patent variable for the 2007-2015 period. The second measure we use is a

firm’s TFP. As a broader measure of innovation and technical progress, TFP is the part of

output growth not explained by the relative contributions of common inputs, such as labor

and capital. To calculate firm-level TFP, we follow the procedure of Giannetti et al. (2015),

who analyze the same dataset from China (see Appendix Table A.1 for more details). In the

main analysis, we examine firms’ innovation outcomes in t+ 2, which is three years after the

enactment of the research exemption. This is based on the observation that the development

process for generic drugs in China takes about 2 to 3 years. Zhang and Nie (2021) recently

find that the implementation of a public health insurance program has led to an immediate

increase in disease-related patent applications in China. For robustness, we also check the

effects in t+ 1 and t+ 3 and obtain similar results.

Following the innovation literature, we control for a set of firm characteristics that can

affect innovation. The control variables include firm size, measured by the log of total assets

(LnAssets) and the log of the total number of employees (LnEmployee); asset tangibility,

PPEAssets, measured by net property, plant, and equipment divided by total assets; capital

expenditure ratio, CAPEXAssets, measured by capital expenditures divided by the book

value of total assets; LEV , the ratio of total liabilities to total assets; CirSharesRatio, the

ratio of unlimited circulating shares to total share capital; growth opportunities, TobinQ;

and corporate liquidity, CashRatio, measured by the ratio of corporate cash to current

liabilities. For further details on variable construction, see Appendix Table A.1.

Lastly, central to our research design is the distinction between biochemical and TCM

firms in China’s pharmaceutical sector. We use the firm classification provided in the original
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database. To verify whether the listed TCM firms are really not involved in generic drug

research or production, we check their annual reports. We find that at least until 2010,

none of the sample TCM firms reported any activities related to generic drugs. However,

toward the end of the sample period, some TCM firms started to invest in generic drug

research. Nonetheless, as Table A.3 indicates, our main qualitative results remain valid

when we remove all TCM firms that reported generic-drug related investments in 2016.

3.2 Summary statistics

Table 1 provides the summary statistics of the 141 pharmaceutical firms in our sam-

ple. All observations are at the firm-year level. Overall, there are 93 biochemical firms

and 48 TCM firms. The average R&D intensity of all listed firms in our sample is 4.3%,

which is higher than the estimated 1% to 2% for all pharmaceutical manufacturers in China

(Sun et al., 2008) but well below the average intensity in developed countries (DiMasi and

Grabowski, 2012). The standard deviation is 3.9%, which implies a large degree of dispersion

in R&D intensity across firms. The average annual R&D spending of the sample is CNY80

million (approximately US$12 million), and the standard deviation is CNY147 million, im-

plying an even greater variation in the total amount of R&D spending. The average number

of successful patent applications is around 12, ranging from 0 to 493 successful patent ap-

plications filed in one year, with a standard deviation of about 31. Figure 2 shows the

distribution of these variables for a pre-reform year (2009) and a post-reform year (2015 or

2018). The distribution is clearly skewed to the right. The patterns suggest that a relatively

small proportion of firms are responsible for making large R&D investments and generating

patents. Some other variables, such as Employee and Assets, also show considerably large

variance. In the regression analysis, the numbers become more comparable when we take

the log of these strongly right-skewed variables.

Figure 2 also shows that the R&D inputs and patent status of the biochemical and TCM

firms in our sample are largely comparable before 2010 but visibly different toward at end
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of the sample period. Especially in the first two panels, the blue bars—representing the

R&D inputs of biochemical firms— clearly show a pattern shifted more to the right than the

orange bars do, which represent TCM firms. In the next section, we describe the empirical

strategy we use to test and quantify the differences between the two groups of firms.

[Table 1 and Figure 2 about here]

4 Empirical Strategy

The presence of TCM firms in China provides unique quasi-experimental variation in

firms’ dependence on earlier patents for product development and production. Our empirical

design exploits this cross-firm variation to isolate the impacts of the research exemption on

the innovation activities of pharmaceutical firms in China. In our thought experiment,

the key difference is that unlike mainstream biochemical firms, TCM firms should not be

substantially affected by the research exemption brought by the 2009 patent law amendment,

due to their distinct product R&D mode based on traditional formulas (see Section 2). Thus,

TCM firms serve as a natural comparison group. We then implement a DID strategy that

compares the outcome variables of biochemical firms (i.e., the treatment group) to those

of TCM firms (i.e., the control group) before and after the enactment of China’s research

exemption law in late 2009.

We use the following baseline specification to run OLS regressions:

yi,t+N = α + β(Treati ∗ Postt) + γXi,t + θt + ωi + εi,t. (1)

In equation (1), i and t are firm and year subscripts, respectively. The dependent variable

yi,t+N is an outcome of interest (e.g., R&D inputs) of firm i in year t+N , where N denotes

the time lag. The main explanatory variable, Treati ∗Postt, is the interaction of the binary

variables Treati and Postt. Specifically, Treati equals one if the firm is a biochemical
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pharmaceutical firm in the treatment group, and zero otherwise. Postt equals one only if

the observation’s year is strictly after 2009; in other words, the estimated effects captured

by β are assumed to start in 2010, or one year after the law’s enactment. Xi,t is a set

of firm-level control variables discussed in Section 3. θt captures time-fixed effects, and ωi

captures firm-fixed effects. Standard errors are clustered at the firm level.

4.1 Validity of the control group

Our estimate of the key coefficient of interest, β, has a clean causal interpretation when

the treatment and control groups are randomly assigned. With a non-random assignment—

as in most observational studies—one concern is that any difference in innovation activities

between biochemical firms and TCM firms after the treatment event may be driven by

differences in firm characteristics unrelated to the research exemption law. To address this

concern, in Table 2, we present evidence showing that the treatment and control firms are

not significantly different in terms of R&D growth and firm characteristics before 2010. In

columns 1 and 2, we report the mean values of the annual compound growth rates of the

key innovation variables and other control variables of the two groups. Columns 3 and 4

show the mean differences and p-values for significance testing, respectively. As we have an

unbalanced panel, we compare the control and treatment groups for each of the three years

before 2010. Biochemical firms have on average higher Tobin’s Q ratios than TCM firms,

while the average log employment of TCM firms is higher. However, based on column 4,

except for PPE/Assets in 2007, none of the mean differences between the treatment and

control firms are statistically significant.

[Table 2 about here]

We perform another check to assess the appropriateness of our comparison choice by

using the synthetic control method (Abadie et al., 2010). The synthetic control algorithm

creates an artificial comparison group that mimics the pre-intervention characteristics of the
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treatment group, and it does so by calculating a weighted average of the units in the set of

potential comparisons, where some units may receive zero weight. In principle, if TCM firms

are indeed suitable comparisons for biochemical firms, the algorithm should give them higher

weights in forming the synthetic control. To implement this, we pool together TCM firms

and additional, out-of-sample firms in the chemical industry (CSRC industry code C26) and

target at the average characteristics of biochemical firms for each of the pre-reform years.8 We

report the results in Appendix Table A.2. As expected, the synthetic control’s observables

closely resemble the average characteristics of the treatment firms in the pre-reform years.

More importantly, TCM firms are indeed given disproportionately higher weights in forming

the synthetic control. For instance, in 2008, TCM firms only account for 20% of all firms,

but their cumulative weights exceed 40%; and in 2009, they account for one third of all firms

but carry 75% of total weights. Overall, this exercise demonstrates that our control group

is also likely to be chosen by the algorithm as qualified candidates for comparison if we use

an alternative, data-driven approach.

To further support our causal interpretation, we examine the pre-treatment trends in the

key innovation variables of the two groups. Specifically, we interact Treati with the year

dummy variables representing 1 and 2 years before the treatment event and add these terms

to equation (1). We find no evidence of any pre-trend in firms’ R&D inputs and patent

status before 2010. The results are reported in Table 5 and discussed in the next section.

8We target the average characteristics of the treatment firms separately for each pre-reform year due to
the data’s unbalanced nature. To be clear, we do not (attempt to) use the synthetic control approach to
estimate the treatment effects, as the synthetic control estimator is inadequate for our study, which has too
few pre-reform years (Abadie, 2021).
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5 Results

5.1 Baseline results

5.1.1 Effects on R&D inputs

Table 3 reports our baseline DID results. In columns 1 and 2, we examine the measures of

R&D inputs. The estimated coefficients of Treat ∗ Post are positive and statistically signif-

icant at the 5% level. The regression model also fits the data well, as evidenced by the high

R2 (i.e., R2 > 0.60). In column 1, our β estimate indicates that the average R&D intensity—

measured by R&D/Sales—of the biochemical firms increases by 1.3 percentage points after

2009, compared with the TCM firms. In the data, the average intensity of the biochemical

firms is around 3.5% to 3.9% before the law’s enactment. Given the causal interpretation of

our estimate, this indicates that firms’ R&D intensity increases by approximately 30% due

to the research exemption, which represents a remarkably large impact.

Column 2 examines firms’ total R&D spending. Our estimate shows that, on average,

biochemical firms spend CNY53.9 million (US$8 million) more on R&D after 2009. Con-

sidering that the average R&D spending is around CNY30 million before the enactment of

the law, this result indicates an even greater impact in terms of total spending. Figure 1

and Table 5 further support our causal interpretation by showing no pre-trend patterns for

either measure of R&D inputs.

To further investigate the nature of those investments, we examine firms’ R&D-related

employment. R&D-related employment is an important indicator of in-house R&D. In Ta-

ble 4, the estimated effects are large and significant—the research exemption drives up R&D

employment in the treatment firms by more than 180% (≈ e1.05−1) and R&D employment as

a fraction of total employment by 14%. This indicates that some of the new R&D activities

have been conducted internally.

As most of the Chinese firms are generic drug producers, it is reasonable to say that those

increased R&D investments are tied to generic drug development. In fact, the few Chinese
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pharmaceutical firms known for genuine innovation became publicly listed only late in the

past decade, and therefore they are not included in our sample.9 Overall, we find that—

as long expected by scholars and policy makers (Iles, 2005; Short, 2016b)—the research

exemption has strong positive effects on pharmaceutical R&D in China.

[Tables 3 and 4 about here]

5.1.2 Effects on future innovation and productivity

We now turn to examine the impact on pharmaceutical innovation. Ex ante, the ef-

fect can be ambiguous, depending on the underlying complementarity or substitutability

between imitation and innovation strategies. On the one hand, generic drug research and

manufacturing may generate knowledge spillovers within firms and complement innovation

in related areas, such as chemical ingredients and production technologies. In fact, there is

scattered anecdotal evidence of such patentable outcomes in China (see Section 2). On the

other hand, it is also likely that pouring resources into generic R&D crowds out genuinely

innovative activities. In column 3 of Table 3, the outcome variable is the number of success-

ful “invention” and “utility model” patents filed by a firm in year t + 2 that are eventually

granted. The coefficient estimate is negative—indicating a potential crowding-out effect on

future patents—but not statistically significant (p-value = 0.303). The bottom line is that

there is no evidence that the research exemption leads to more future patents by biochemical

firms, compared with TCM firms. Figure 2, Panel C, which shows the yearly effects after

t+ 2, further confirms this result by showing no significant impact on patents in the longer

term. In column 4 examining firm productivity, we still do not find any significant impact,

as the estimate is small and indistinguishable from zero. As shown in Table A.3, our main

results are robust to an array of alternative measures, including other patent measures.

Put together, our results show that China’s research exemption law does not lead to

more patents or increased productivity in the pharmaceutical sector, although it evidently

9These listed pharmaceutical companies are Alphamab Oncology, BeiGene, Betta Pharmaceuticals, Chip-
screen Biosciences and Innovent Biologics.
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increases firms’ R&D inputs. Previously, Galasso and Schankerman (2015) find that remov-

ing patent rights by court invalidation affects cumulative innovation in IT and electronics but

has no effects on chemicals and pharmaceuticals. Our findings are consistent with theirs. As

we observe both R&D inputs and outputs, this suggests that the increase in R&D brought

by the research exemption did not generate sufficient knowledge spillovers to result in more

patentable innovation or improved productivity. In fact, the estimated average treatment

effect on future patents is negative (although not significant), suggesting a potential substi-

tution effect between generic R&D and innovation activity.

5.2 Pre-trends and dynamic effects

One concern about our main findings is that the treatment firms that are more likely

to be affected by the research exemption might already have been on a trajectory of higher

R&D inputs. In the previous section, we showed that the average innovation growth and

firm characteristics do not exhibit significant differences between the treatment and control

groups. Here, we further strengthen this point by showing the pre-trend results in Table 5.

If the treatment firms were on a different trajectory before 2010, the coefficients attached

to the interactions of Treat and the pre-treatment year dummies should be significant and

positive or different from zero. In contrast, we find that all of the coefficients are small

and not significant. There is clearly no pre-trend pattern in R&D inputs and patent status,

which supports our causal interpretation of the main estimates.

[Table 5 about here]

Next, we perform a non-parametric event-study analysis of the dynamics of the impact

of the research exemption. Formally, we run the following regression:

yi,t = α +
8∑

k=−2

βk Treati ∗ 1(t− 2010 = k) + γXi,t + θt + ωi + εi,t, (2)
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where 1(·) is an indicator function equal to one if the observation’s year minus the treatment

year (i.e., 2010) is exactly equal to k. The coefficients of the interactions of Treat and the

yearly indicators, β−2, β−1, ..., β8, range from two years before 2010 to eight years afterwards.

The omitted year is 2007. We include the same set of control variables and fixed effects as

in equation (1). In particular, this model does not impose any functional form restrictions

on the pre- and post-treatment effects.

Figure 3 plots the estimated βK coefficients and their 95% confidence intervals. It shows

that the differences between the treatment and control firms for the three innovation-related

variables are largely indistinguishable from zero, thus confirming our pre-trend results in

Table 5. Panel (a) shows the effect on R&D intensity. The parallel trend in R&D intensity

continues into the post-treatment years, but the positive difference becomes significant two

years after the law’s enactment and persistently increases over time. The magnitude of the

effects is comparable to our main estimates in Table 3. Panel (b) plots the estimates for

R&D spending. The qualitative pattern is similar, although the effects are less precisely

estimated. In a separate regression not reported here, we treat both 2007 and 2008 as the

baseline years, and the post-treatment effects are all positive and significant.

Panel (c) shows the effect on the number of patents. The differences are generally close

to zero with large standard errors. The graph contrasts sharply with the other two graphs,

which clearly show positive and upward post-treatment trends. This is consistent with our

results in Table 3, indicating no significant impact of the research exemption on firms’ patent

outcomes.

[Figure 3 about here]

5.3 Robustness

In this section, we check the robustness of our main estimates.

Placebo tests. We previously showed in Table 5 that our results are not driven by concerns

related to pre-trends. Here, we perform another placebo test to address any remaining con-
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cern that our results may be driven by omitted factors unrelated to the research exemption.

Specifically, we hold the policy year constant and randomly assign firms to the treatment or

control group. This random assignment gives us a “fake” Treat variable, which we use to

re-estimate the main specification (1). For each of the dependent variables, we repeat the

exercise 500 times and study the empirical distribution of the coefficients of Treat ∗ Post.

Figure 4 shows the distribution of the placebo estimates for R&D intensity. The average

is very close to zero (i.e., −0.00002) and is far from the vertical red line representing our

baseline estimate reported in Table 3. In fact, in only 2.2% of the random draws does the

placebo test yield estimates that are statistically significant and greater than the baseline

estimate. Similarly, for the effect on total R&D expenditure, the average placebo estimate

is significantly closer to zero (4.15) than the original estimate (53.9) . In only 15% of the

random draws, the placebo test yields estimates that are significant and greater than the

baseline results. Overall, these findings indicate that the actual differences in firms’ “treat-

ment or control” status drive our main results. The placebo test further strengthens our

confidence in the empirical strategy used.

[Figure 4 about here]

Sample construction. For our main analysis, we drop all firms that appear in the database

after the treatment year. For robustness, we further trim our sample by removing all firms

with missing outcome variables before or after 2009. Although this dramatically reduces

the number of observations by more than 50% for the R&D variables, Panel A of Table A.3

shows that all of the estimated coefficients are quantitatively similar to the baseline results

reported in Table 3.

A sharp DID design requires that the control firms not engage in any activity likely

to be affected by the research exemption. Although we rely on a few sources to back this

assumption, there may still be a concern. To address this issue, we manually check the annual

financial reports of all TCM firms in our sample. We find that until 2010, none of the 48 TCM

firms in our sample were involved in any generic-drug related activities. However, close to
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the end of our sample period, in 2016, 16 TCM firms reported such activities. Following the

logic of our research design, although including these firms will not harm the identification

of the treatment effect around the policy event year, it may attenuate our estimates. As

another robustness check, we remove these 16 firms and report the new estimates in Panel

B. In columns 1 and 2, the coefficients for R&D inputs are larger than those reported in

Table 3. For instance, they indicate that, on average, the research exemption law increases

firms’ R&D intensity by 2.1 points and total R&D spending by CNY86 million (US$12.6

million). In columns 3 and 4, the estimates remain negative but not statistically significant,

and thus consistent with our original results for patents and TFP. As expected, removing

the susceptible firms from the control group does not change our qualitative results.

Demand-side influences. An alternative explanation is that our main results may be

driven by demand-side factors, such as increases in international trade. For instance, if there

is a surge in demand in the global market for China’s generic drugs contemporaneous to

the 2009 patent law reform in 2009, this differential demand effect may also induce Chinese

biochemical manufacturers to invest more in R&D relative to TCM firms. To account for

this potential factor, in our main regressions, we also control for the firms’ overseas sales

revenue. As shown in Table A.3, Panel C, the new estimates are quantitatively similar to

our earlier results.

Alternative outcome variables. In Panel D of Table A.3, column 1 uses a Poisson

regression model to examine the count of patents. Column 2 examines the total number of

all types of patents, including the “design” type. Columns 3 and 4 use the same definitions

of patents and TFP as in Table 3 but examine the effects in t + 3. All of the coefficients

show similar effects of the research exemption to our baseline estimates.

5.4 Market power and innovation responses

To explore firm heterogeneity in treatment effects, we focus on the role of market power in

spurring innovation activities. Since Schumpeter (1942), it has been argued that the posses-
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sion of ex ante market power—monopoly power in the extreme case—gives firms incentives

to innovate. Another view held by Arrow (1962) and followers suggests that a monopolist

has less incentive to incur the fixed cost of technology adoption, as it cannot amortize the

cost with its restricted output. To test these competing arguments, we investigate whether

the effects of the research exemption differ across firms with various degrees of market power.

While we do not observe product-level information, we use a firm’s sales share in its home

province in 2009 to measure its market power, which is in line with Blundell et al. (1999).

We interact this additional regressor with Treat ∗ Post in equation (1).

We report the results in Table 6, Panel A. In columns 1 and 4 for R&D intensity and

TFP, the estimated coefficients of the three-way interaction term are positive but largely

indistinguishable from zero. In the literature, a non-linear, “U-shaped” relationship between

R&D intensity and concentration is often observed empirically (Aghion et al., 2005); it is

therefore not surprising that our result does not show a larger impact on R&D intensity for

firms with larger market power.

More importantly, in columns 2 and 3, the estimated coefficients of the three-way inter-

action are positive and significant at the 5% level; they indicate that the research exemp-

tion leads to a larger increase in R&D spending and future patents for firms with greater

market share. In particular, given that the average market share is 7% in 2009, the aver-

age effects on R&D spending and patents are 76.25 (2.768 + 0.07 ∗ 1049.799) and −0.104

(−0.256+0.07∗2.162), respectively, which are comparable to the baseline estimates reported

in Table 3. Based on these estimates, we can see that the research exemption actually trans-

lates into more future patents for firms with sufficiently large market share. For instance, in

our sample, the market shares of the top 5% biochemical firms in 2009 were over 16%, so for

these firms, our estimates suggest an increase of at least 9% (≈ e−0.256+0.16∗2.162− 1) in their

future patents due to the research exemption. Nonetheless, this important heterogeneity

could not be captured by our baseline DID results.

One alternative explanation of the above finding is that the research exemption simply
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has larger effects for larger firms and that firm size is correlated with market share. In fact,

the relationship between firm size and innovation is the theme of a large literature following

the Schumpeterian tradition.10 Relevant to our context, for instance, Cohen and Klepper

(1996) argue that it is easier for larger firms to enjoy the benefit of process innovations (i.e.,

the improvement of manufacturing processes), which are less saleable in disembodied form.

To test this, in Panels B and C, we interact Treat ∗ Post with two measures of firm size.

Panel B uses a binary variable indicating whether a firm is officially classified as a large firm

according to China’s National Bureau of Statistics.11 Panel C uses the continuous variable

LnAssets. In both specifications, our estimates show that for large firms, the effects on

R&D spending are greater (column 2 of Panels B and C); and these results echo the findings

in the literature (e.g. Cohen, 2010), especially those of Grabowski (1968) and Henderson and

Cockburn (1996) on firm size and pharmaceutical R&D. However, these differential effects

are not statistically significant for the number of patents (see column 3 of Panels B and C).

In fact, according to column 4 of Panel B, the estimated effect on TFP is positive only for

small and medium-size firms but not for large firms. Overall, our results indicate that firm

size cannot explain why firms with large market shares experience a larger increase in future

patents after the enactment of the research exemption law.

Taken together, our evidence is consistent with Schumpeter’s view on the relationship

between market power and the incentive to innovate. For underlying mechanisms, first, the

class Schumpeterian argument states that product market competition can reduce economic

rents for successful innovators, rendering firms less incentivized ex ante. In our context, an-

other possible explanation emerges: as more profitable firms often have more diverse product

lines, the economy of scope or knowledge spillovers of imitation on innovation can be larger

for firms that face less competition. Our findings demonstrate that market competition and

innovation policies can generate important interactions in shaping the innovation incentives

10See Cohen (2010) for a survey of the literature
11The classification is industry-specific. For instance, in 2011, for manufacturing firms, a ”large-size” firm

needs to have at least 1,000 employees and CNY400 million sales revenue.
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of follower firms.

6 Conclusion

Although it is generally believed that by limiting the patent rights of incumbent innova-

tors, innovation policies like the research exemption can be crucial in promoting R&D and

innovation activities among latecomer firms, there is a lack of causal evidence of its impact.

This study is the first to examine the effects of the research exemption, exploiting the patent

law reform and the unique institutional setting of the pharmaceutical industry in China.

Using firm-level data from 2007 to 2018 and a novel DID design, we find that the research

exemption law has had strong positive effects on pharmaceutical R&D in China. However,

we do not find evidence that the research exemption has led to more patents or improved

productivity on average. Our investigation of firm heterogeneity in treatment effects further

reveals that the research exemption has led to more patents only for few firms with large

market power in China.

Overall, our empirical findings have important implications for the pharmaceutical sector

and for the design of innovation policies in general. First, we furnish clear evidence that

the research exemption law has led to large increases in pharmaceutical R&D investments

in China—which are very likely to have contributed to China’s growing position over the

past decade in the global supply chain of chemical ingredients and generic drugs. Second,

regarding truly innovative outcomes, the research exemption has had limited impact. The

lessons from China are particularly relevant for laggard countries whose manufacturing sector

mostly consists of follower firms striving to catch up with the technological frontier. Using

China’s case, our study highlights the importance of understanding the strategic relationship

between imitation and innovation for public policy design. Various external factors, such

as market competitiveness, should also be considered by practitioners and policy makers in

business planning and policy making, as they may generate significant interaction effects
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with R&D incentives and innovation policies. Lastly, our empirical design can also help us

to analyze other outcome variables in the Chinese context, such as the direction of R&D

and product proliferation, with other suitable datasets. We leave these directions for future

research.
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Figures

Figure 1: Average R&D spending over time: Biochemical vs. TCM firms
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Notes: This figure plots the average R&D spending of biochemical pharmaceutical firms versus TCM firms
in China.
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Figure 2: Distribution of the R&D and patent variables in selected years

(a) R&D intensity of biochemical and TCM firms in 2009 and 2018

(b) Total R&D spending of biochemical and TCM firms in 2009 and 2018

(c) No. successful patent applications by biochemical and TCM firms in 2009 and 2015
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Figure 3: Parallel trends and dynamic effects
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Notes: These figures plot coefficients and 95 percent confidence internals from the event study specification
described in Section 5.2. The coefficients are estimates from OLS regressions, and the standard errors are
robust and clustered at the firm level.
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Figure 4: Placebo estimates
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Notes: Density of the estimated coefficients from 500 simulations using random group assignments. The
red vertical line represents the baseline estimate from Table 3. See Section 5.3 for more details.
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Tables

Table 1: Summary statistics of main variables

obs mean sd min 25% median 75% max

R&D/Sales 1106 0.043 0.039 0 0.024 0.037 0.052 0.526
R&DSpending (million CNY) 1112 80.042 147.724 0.088 15.35 36.532 82.692 2100.256
Patent 682 12.393 30.943 0 2 6 15 493
TFP 1187 4.370 1.195 1.478 3.375 4.179 5.449 7.359
Assets (million CNY) 1467 3468.391 4955.194 101.651 878.136 1916.543 4018.803 58692.73
Employee 1467 3378.146 3856.32 24 1007 1881 4295 28848
PPE/Assets 1467 0.219 0.112 0 0.133 0.2 0.285 0.693
CAPEX/Assets 1467 0.057 0.048 0.001 0.025 0.044 0.077 0.384
TobinQ 1467 2.774 1.831 0.809 1.589 2.168 3.278 16.864
LEV 1467 0.338 0.212 0.008 0.177 0.314 0.463 1.893
CashRatio 1467 0.02 0.062 -0.044 0.003 0.006 0.016 1.675
R&DStaff 544 352.551 423.238 6 131 228 414 4464
R&DStaffRatio 536 0.112 0.069 0.0004 0.06 0.108 0.146 0.433

Notes: This table reports the descriptive statistics for the variables used in the baseline regressions, based on the sample of publicly listed
pharmaceutical firms in China from 2007 to 2018. Observations are at the firm-year level. The variable Patent is for 2007–2015 only.
Variable definitions are in Appendix Table A.1. All money values are in 2018 Chinese yuan (CNY).
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Table 2: Comparison of the treatment and control groups before the research exemption law

treatment
mean

control mean diff p-value

variable (1) (2) (3) (4)

R&D/Sales growth -0.488 -0.5 0.012 0.928
R&D spending growth -0.454 -0.489 0.035 0.802
Patent growth 0.217 0.234 -0.017 0.869

Year 2007
lnAssets 20.625 20.475 0.150 0.474
lnEmployee 7.286 7.403 -0.117 0.651
PPE/Assets 0.282 0.229 0.053 0.026**
CAPEX/Assets 0.057 0.049 0.008 0.553
TobinQ 3.336 2.713 0.623 0.165
LEV 0.398 0.427 -0.029 0.558
CashRatio 0.007 0.008 -0.001 0.562

Year 2008
lnAssets 20.700 20.604 0.096 0.636
lnEmployee 7.271 7.467 -0.195 0.430
PPE/Assets 0.263 0.232 0.031 0.184
CAPEX/Assets 0.064 0.054 0.01 0.484
TobinQ 2.03 1.722 0.308 0.285
LEV 0.395 0.399 -0.004 0.933
CashRatio 0.010 0.011 -0.001 0.756

Year 2009
lnAssets 20.834 20.708 0.126 0.516
lnEmployee 7.297 7.516 -0.218 0.346
PPE/Assets 0.242 0.212 0.03 0.211
CAPEX/Assets 0.059 0.047 0.012 0.302
TobinQ 3.313 2.787 0.526 0.187
LEV 0.374 0.379 -0.005 0.933
CashRatio 0.017 0.016 0.001 0.875

Notes: This table reports the univariate comparisons between the treatment and control firms’ charac-
teristics and their corresponding p-values in the pre-reform years (2007–2009). Annualized growth rates
are reported for R&D and patent variables. All money values are in 2018 Chinese yuan (CNY).
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Table 3: Effects of the research exemption on R&D inputs and innovation outputs

dependent variable R&D/Salest R&Dt LnPatentt+2 TFPt+2

(1) (2) (3) (4)

Treat ∗ Post 0.013** 53.904** -0.138 0.033
(0.006) (25.747) (0.134) (0.040)

LnAssets -0.000 54.953*** -0.089 0.065*
(0.003) (11.284) (0.163) (0.036)

PPE/Assets 0.002 20.328 0.154 -0.025
(0.011) (36.059) (0.610) (0.108)

LnEmployee -0.003 -4.704 0.240** -0.117***
(0.002) (10.710) (0.100) (0.024)

LEV 0.001 8.741 -0.524 -0.021
(0.009) (20.434) (0.380) (0.085)

TobinQ 0.001 7.846** -0.034 0.027***
(0.001) (3.188) (0.037) (0.008)

CashRate -0.003 74.165 -1.646*** -0.066
(0.008) (59.936) (0.346) (0.090)

CAPEX/Assets 0.062*** 7.292 -0.885 -0.563***
(0.019) (64.289) (0.907) (0.215)

Constant 0.061 -1.1e+03*** 2.370 3.827***
(0.050) (235.627) (3.275) (0.719)

Year fixed-effects Yes Yes Yes Yes
Firm fixed-effects Yes Yes Yes Yes
N 1106 1112 679 1187
Adj. R2 0.639 0.632 0.596 0.965

Notes: This table reports the regression results for the impact of the research exemptions. The variable definitions are
in Appendix Table A.1. Robust standard errors clustered by firm are displayed in parentheses. Significance at * 10%,
** 5%, and *** 1% levels.
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Table 4: Effects on the number of R&D personnel

dependent variable LnR&DStaff R&DStaffRatio
(1) (2)

Treat ∗ Post 1.050* 0.143***
(0.562) (0.051)

Constant 1.155 0.028
(2.776) (0.176)

Controls Yes Yes
Year fixed-effects Yes Yes
Firm fixed-effects Yes Yes
N 544 536
Adj. R2 0.922 0.876

Notes: Robust standard errors clustered by firm are displayed in parentheses.
Significance at * 10%, ** 5%, and *** 1% levels.

Table 5: Pre-trend results

dependent variable R&D/Salest R&Dt LnPatentt

(1) (2) (3)

2 years before reform 0.010 -21.514 -0.024
(0.010) (56.304) (0.274)

1 year before reform 0.016 58.266 -0.047
(0.012) (56.512) (0.243)

Treat ∗ Post 0.023*** 75.216 0.012
(0.008) (51.971) (0.207)

Controls Yes Yes Yes
Year fixed-effects Yes Yes Yes
Firm fixed-effects Yes Yes Yes
N 1106 1112 892
Adj. R2 0.639 0.632 0.557

Notes: This table reports the results of the pre-trend test with two pre-treatment yearly dummies
representing 1 and 2 years before the law change added to the main regressions. For the results
of an extensive event-study analysis, see Figure 3. Robust standard errors clustered by firm are
displayed in parentheses. Significance at * 10%, ** 5%, and *** 1% levels.
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Table 6: Heterogeneous effects

dependent variable R&D/Salest R&Dt LnPatentt+2 TFPt+2

(1) (2) (3) (4)

Panel A
Treat ∗ Post 0.010 2.768 -0.256** 0.023

(0.007) (20.628) (0.144) (0.043)
Treat ∗ Post ∗MarketShare 0.058 1049.799** 2.162** 0.179

(0.045) (449.643) (1.037) (0.327)
N 1106 1112 679 1187
Adjusted R2 0.639 0.637 0.598 0.965

Panel B
Treat ∗ Post 0.001 -21.683 -0.022 0.197***

(0.011) (19.988) (0.237) (0.068)
Treat ∗ Post ∗ Largesize 0.014 91.202*** -0.134 -0.201***

(0.010) (24.932) (0.228) (0.064)
N 1106 1112 679 1187
Adjusted R2 0.640 0.634 0.595 0.965

Panel C
Treat ∗ Post -0.153*** -1.4e+03*** -2.369 0.353

(0.038) (312.893) (1.776) (0.461)
Treat ∗ Post ∗ LnAssets 0.008*** 65.247*** 0.102 -0.015

(0.002) (14.958) (0.082) (0.021)
N 1106 1112 679 1187
Adjusted R2 0.643 0.652 0.596 0.965
Controls Yes Yes Yes Yes
Year fixed-effects Yes Yes Yes Yes
Firm fixed-effects Yes Yes Yes Yes

Notes: This table reports additional results for the heterogeneous effects of the research exemption. MarketShare is a firm’s sales
revenue share in its home province in 2009. Largesize is a dummy variable indicating whether a firm is officially classified as a large-
size firm by China’s National Bureau of Statistics. Other variable definitions are in Appendix Table A.1. All regressions include
firm-level controls, year fixed effect and firm fixed effect. Robust standard errors clustered by firm are displayed in parentheses.
Significance at * 10%, ** 5%, and *** 1% levels.
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A Appendix

A.1 Variable definitions

variable definition
R&D/Sales The firm’s R&D expenditure scaled by total revenue in a given year;
R&DSpending The firm’s R&D expenditure after inflation adjustment;
LnPatent Natural log of one plus the firm’s total number of “invention” and “util-

ity model” patent applications filed in a given year that are eventually
granted;

TFP Total factor productivity computed as the residual from the following
cross-sectional regression estimated for each year, following Giannetti
et al. (2015):

yit = αt + βtlit + γtkit + δtmit + εit

where yit is the natural log of one plus firm i’s total revenue (in CNY)
in year t, lit is the natural log of firm i’s employment (in persons), kit is
the natural log of the total assets, and mit the natural log of the total
expenditures on labor and capital goods;

LnAssets Natural log of the book value of the firm’s total assets measured at the
end of fiscal year t after inflation adjustment;

LnEmployee Natural logarithm of the total number of employees;
PPE/Assets Net property, plant, and equipment divided by the book value of the

firm’s total assets;
CAPEX/Assets Capital expenditure scaled by the book value of the firm’s total assets;
TobinQ The firm’s market-to-book ratio, calculated as [the market value of

equity plus the book value of assets minus the book value of equity
minus balance sheet deferred taxes] divided by the book value of the
firm’s total assets;

LEV The book value of the firm’s debt divided by the book value of total
assets;

CashRatio The ratio of the firm’s cash and cash equivalents to its current liabilities;
LnR&DStaff Natural log of the number of R&D-related personnel, which includes

employees who directly participate in R&D project activities, R&D
project management personnel, and personnel who provide materials,
equipment maintenance and other direct services for R&D activities;

R&DStaffRatio The number of R&D personnel divided by the total number of employ-
ees.

Table A.1: Variable definitions
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A.2 Assessing TCM firms using synthetic controls

We use the synthetic control method (Abadie et al., 2010; Abadie, 2021) to create a synthetic
control group from a pool of TCM firms and out-of-sample firms in the chemical industry, targeting
at the average characteristics of treated firms for each of the pre-treat years. Table A.2 below shows
the mean characteristics of the treatment and synthetic control groups for each year. It also shows
the cumulative regression weights that the synthetic control algorithm assigns to TCM firms.

variable treated synthetic control

Year 2007
% TCM firms: 42.8% Total weights of TCM firms: 44.9%
lnAssets 28.004 28.050
lnEmployee 7.807 7.541
PPE/Assets 0.279 0.269
CAPEX/Assets 0.053 0.061
TobinQ 3.336 3.229
LEV 0.421 0.438
CashRatio 0.006 0.003

Year 2008
% TCM firms: 20% Total weights of TCM firms: 40.3%
lnAssets 28.026 27.589
lnEmployee 7.785 7.710
PPE/Assets 0.270 0.276
CAPEX/Assets 0.062 0.085
TobinQ 2.030 1.533
LEV 0.403 0.405
CashRatio 0.009 0.008

Year 2009
% TCM firms: 33.3% Total weights of TCM firms: 75%
lnAssets 28.160 28.146
lnEmployee 7.779 7.691
PPE/Assets 0.245 0.256
CAPEX/Assets 0.055 0.062
TobinQ 3.313 2.814
LEV 0.384 0.385
CashRatio 0.016 0.017

Table A.2: Comparison of biochemical firms and synthetic controls
before the enactment of the research exemption law
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A.3 Robustness results

(1) (2) (3) (4)

Panel A: Removing firms w/ missing obs. before or after 2009
dependent variable R&D/Salest R&Dt LnPatentt+2 TFPt+2

Treat ∗ Post 0.012** 55.333** -0.084 0.032
(0.005) (26.311) (0.134) (0.040)

N 456 456 525 1123
Adj. R2 0.650 0.591 0.574 0.965

Panel B: Removing TCM firms w/ reported generic drug activities
dependent variable R&D/Salest R&Dt LnPatentt+2 TFPt+2

Treat ∗ Post 0.021*** 86.500*** -0.162 -0.010
(0.007) (32.731) (0.170) (0.052)

N 978 984 595 1051
Adj. R2 0.631 0.625 0.583 0.963

Panel C: Controlling for overseas sales
dependent variable R&D/Salest R&Dt LnPatentt+2 TFPt+2

Treat ∗ Post 0.012** 49.778* -0.135 0.036
(0.006) (25.982) (0.134) (0.040)

N 1106 1112 679 1187
Adj. R2 0.641 0.636 0.595 0.965

Panel D: Other outcome variables
dependent variable Patentt+2 (Poisson reg.) LnAllPatentt+2 LnPatentt+3 TFPt+3

Treat ∗ Post -0.218 0.005 -0.144 0.002
(0.241) (0.131) (0.149) (0.040)

N 675 679 555 1047
Adj. R2 – 0.606 0.560 0.962

Notes: This table reports the robustness results. See Section 5.3 for more details. All regressions include firm-level controls and
year and firm fixed effects. Robust standard errors clustered by firm are displayed in parentheses. Significance at * 10%, ** 5%,
and *** 1% levels.

Table A.3: Robustness results
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